

Our Vision

At Foxfields our curriculum intent is as follows -

'A tailored curriculum designed to prepare our pupils to be confident and successful individuals who make outstanding progress and are prepared for life after school.'

At Foxfields Academy, we believe that children should be exposed to mathematics through oral, visual, pictorial and concrete strategies. Mathematics should always be **meaningful and purposeful and be as close to 'real life' experiences as possible. The aim** is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

Our calculation Policy has been adapted from White Rose Maths. This document identifies the progress in calculation strategies for all children, moving from concrete, pictorial and abstract. Formal methods to 1000 will be taught as the highest progression. This will work alongside and up to the Step 6 curriculum. Children will progress into the next stage when they are ready and when they are confident in their fluency and reasoning. This policy contains the methods that will be taught within our school alongside practical resources. It has been written to ensure consistency and progression throughout the school.

Our calculation curriculum promotes Foxfields ethos and is underpinned by our purpose 'To put learners first and prepare them for their future' it is also fundamental for our strategic vision which is that 'At Foxfields there will be no limit to the possibilities for our pupils. We want to build a first-class education provision that provides highly tailored learning to ensure that our pupils are best prepared for life after school'.

At Foxfields we believe that calculation is vital in order to foster confidence and achievement in a skill that is essential in our society and in everyday life. We are committed to ensuring that all pupils achieve mastery in key concepts of mathematics, appropriate and specific to them. They will make genuine progress and avoid gaps that may provide barriers to learning as they move through education. Assessment for Learning, and emphasis on investigation, problem solving, real life examples, jobs and the development of mathematical thinking are essential components of the approach to mathematics at Foxfields. A rigorous and detailed evaluation of planning, teaching and assessment is important to provide continued improvement and development of calculation at Foxfields.

Resource Allocation:

Resources are selected to teach calculation that are:

- Age appropriate
- Non-discriminatory
- In accord with the values of Foxfields

Accurate mathematical vocabulary is used in our teaching and children are expected to use this in their verbal and written examples. Number facts and mental recall is established before standard written methods are introduced.

Mathematics contributes to many other subjects and is it important that pupils are given opportunities for cross curricular development. It is important that mathematics is highlighted and planned into other curriculums such as Science and ICT. Other examples may include properties of shape in Art and Design Technology or the collection and presentation of data in History and Geography.

We endeavour to set work that is challenging and personalised. Each class will use differentiated and specific worksheets and resources. Additional enrichment opportunities will be encouraged such as cooking, music or building. Each pupil will have a specific calculation starter at the beginning of each lesson. They will also have personalised access to a multiplication booklet to develop their multiplication and division skills.

Assessment

Foxfields uses a bespoke assessment system which has been designed around the National Curriculum. This is used to inform planning and facilitate differentiation in lessons. The assessment removes the use of levels by including 1-5 grading descriptors. This provides a deeper understanding of attainment and progress. All assessments and teaching inform teachers understanding of a child's ability in mathematics. The school's Assessment and Marking Policies inform high quality feedback and pupils' response to it in Mathematics (Number).

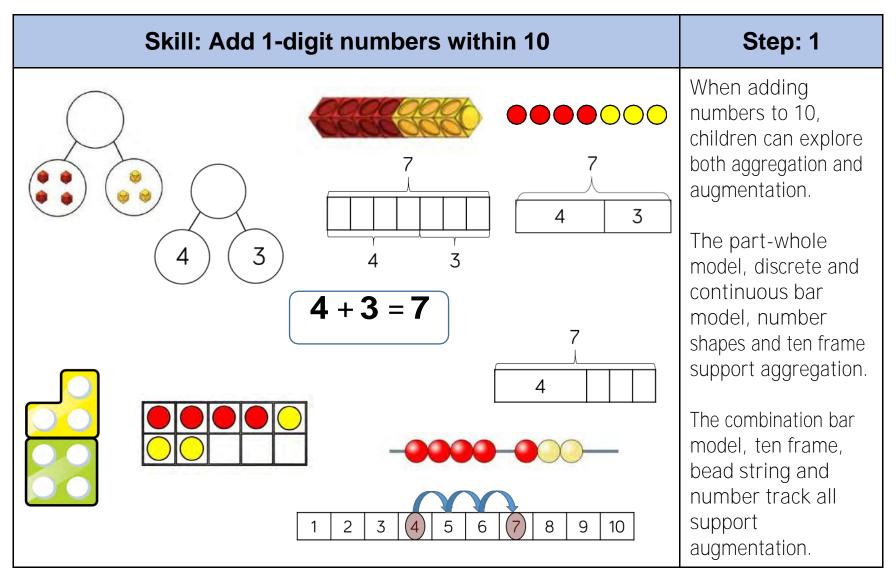
Safeguarding:

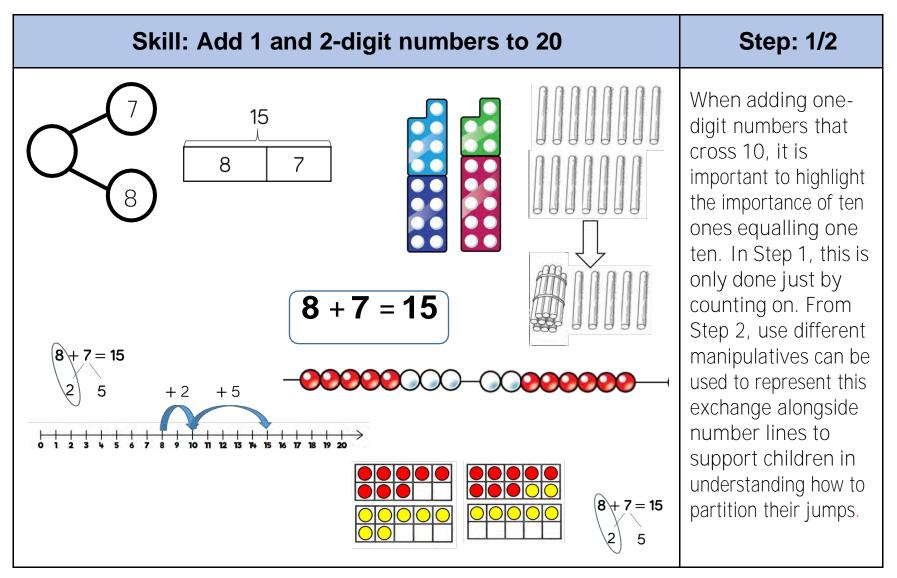
Should any topic be raised by a pupil that is not part of the lesson the member of teaching staff will discuss with the pupil outside of the lesson time. If there are any concerns for the pupil safety then the safeguarding team will be informed immediately and other organisations contacted were necessary.

Monitoring and review

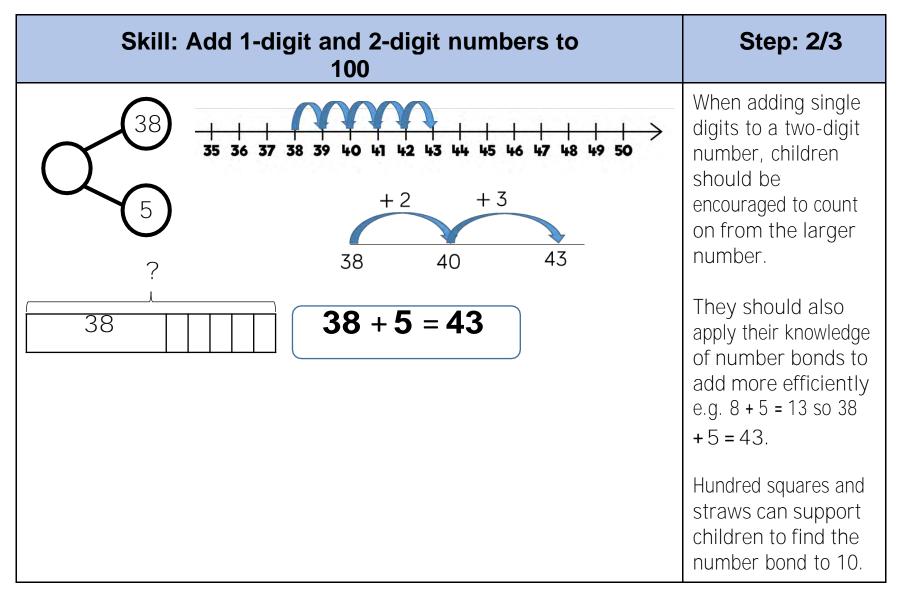
Mathematics is the responsibility of all staff at Foxfields however the Calculation subject leader will also:

- Support colleagues in their teaching, by keeping informed about current developments in the subject and providing resources where appropriate,
- Contribute to staff meetings and training sessions to facilitate the teaching of mathematics
- Contribute to quality assurance processes involving the subject such as moderation and lesson drop ins.

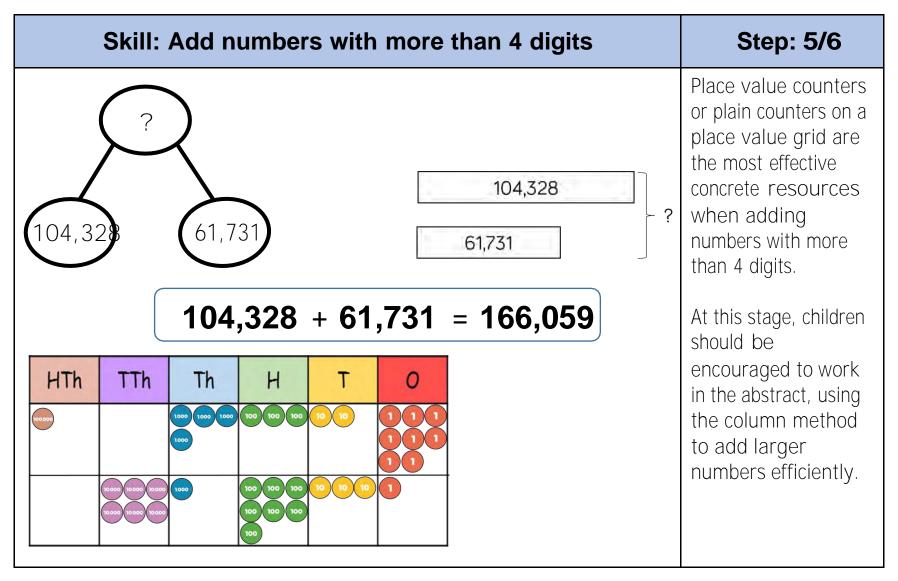

Lead staff are expected to monitor the progress of pupils in Mathematics through the **school's** assessment system.


Policy Review

Foxfields considers the Calculation Policy document to be important and the policy will be reviewed by the Calculation subject leader every year.

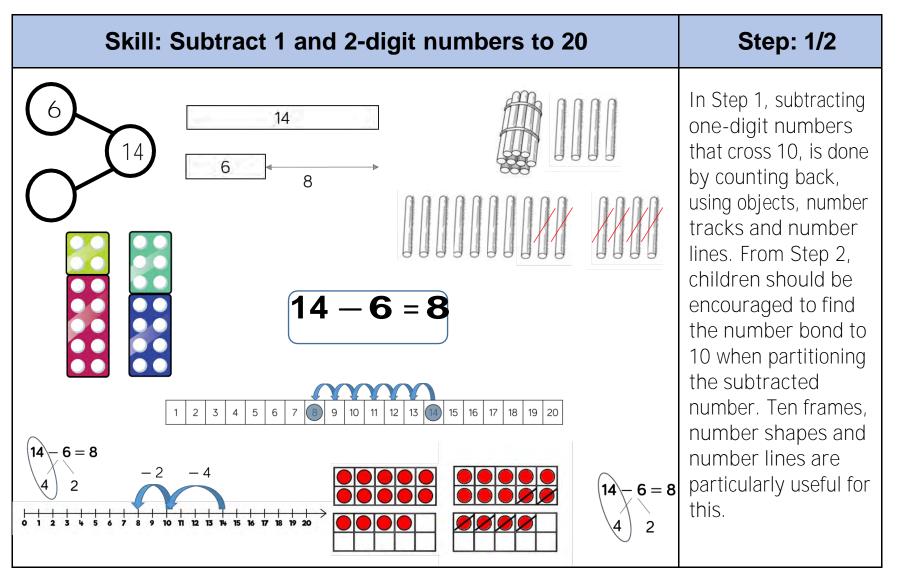

Skill	Step	Representations and models	
Add two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Add 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead strings (20) Number tracks Number lines (labelled) Straws
Add three 1-digit numbers	2	Part-whole model Bar model	Ten frames (within 20) Number shapes
Add 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square

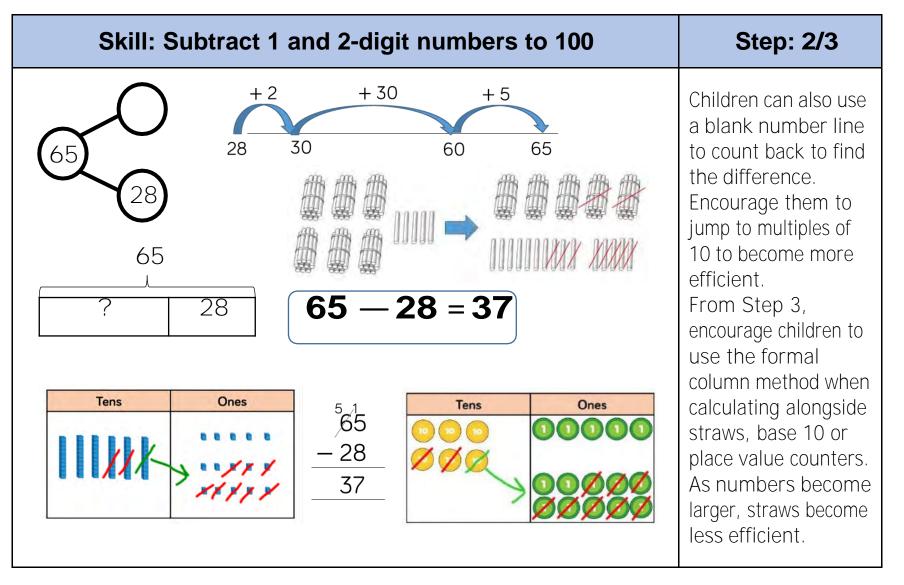
Skill	Step	Representations and models	
Add two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Base 10 Place value counters
Add with up to 3-digits	3	Part-whole model Bar model	Base 10 Place value counters Column addition
Add with up to 4-digits	4	Part-whole model Bar model	Base 10 Place value counters Column addition
Add with more than 4 digits	5	Part-whole model Bar model	Place value counters Column addition
Add with up to 3 decimal places	5	Part-whole model Bar model	Place value counters Column addition

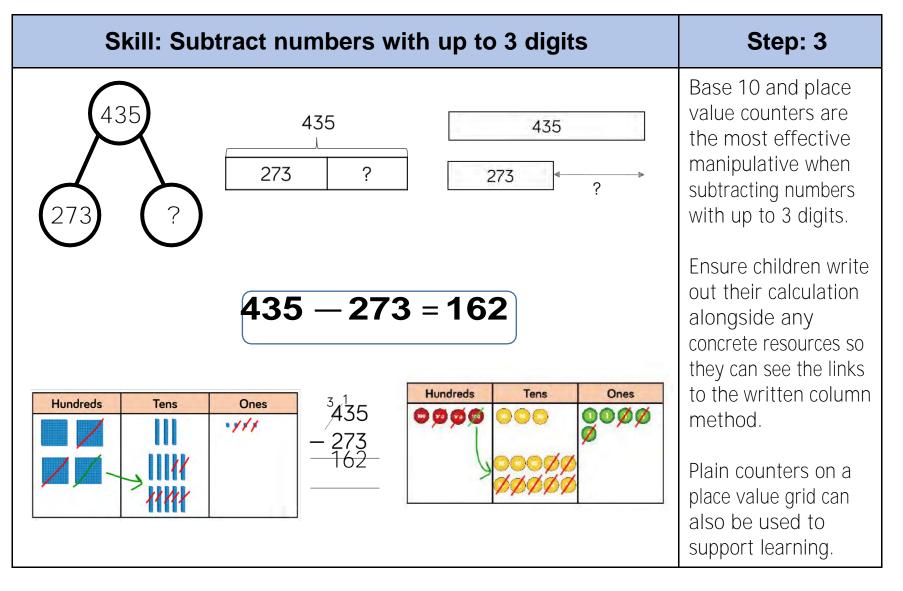

Skill: Add three 1-digit numbers	Step: 2
$\begin{array}{c} 16\\ 16\\ 7\\ 6\\ 3\end{array}$	When adding three 1- digit numbers, children should be encouraged to look for number bonds to 10 or doubles to add the numbers more efficiently.
7 + 6 + 3 = 16	This supports children in their understanding of commutativity.
16	Manipulatives that highlight number bonds to 10 are effective when adding three 1-digit numbers.

Skill: Add two 2-digit numbers to 100		Step: 2/3	
38 (23) ?		Children can use a blank number line and other representations to count on to find the total. Encourage them to jump to multiples of 10 to become more efficient.	
38 23	$ \begin{array}{c} 38 + 23 = 61 \\ 38 \\ + 23 \\ \hline 1 \\ \hline 1 \end{array} $	From Step 3, encourage children to use the formal column method when calculating alongside straws, base 10 or place value counters. As numbers become larger, straws become less efficient.	

Skill: Add numbers with up to 4 digits	Step: 4
? 1,378 2,138 1,378	Base 10 and place value counters are the most effective manipulatives when adding numbers with up to 4 digits.
1 1 1,378 + 2,148 = 3,526	Ensure children write out their calculation alongside any concrete resources so
Thousands Hundreds Tens Ones Image: Construction of the structure of the st	they can see the links to the written column method.
	Plain counters on a place value grid can also be used to support learning.




Skill: Add with up to 3 decimal places	Step: 5
$\begin{array}{c} 2.41 \\ 3.65 \\ 3.65 \\ 2.41 \\ 3.65 \\ 2.41 \\ 3.65 \\ 2.41 \\ 6.06 \\ 1 \\ 3.65 + 2.41 = 6.06 \\ \end{array}$	Place value counters and plain counters on a place value grid are the most effective manipulatives when adding decimals with 1, 2 and then 3 decimal places. Ensure children have experience of adding decimals with a variety of decimal places. This includes putting this into context when adding money and other measures.


Skill	Step	Representations and models	
Subtract two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Subtract 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead string (20) Number tracks Number lines (labelled) Straws
Subtract 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square
Subtract two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Base 10 Place value counters

Skill	Step	Representations and models	
Subtract with up to 3- digits	3	Part-whole model Bar model	Base 10 Place value counters Column subtraction
Subtract with up to 4- digits	4	Part-whole model Bar model	Base 10 Place value counters Column subtraction
Subtract with more than 4 digits	5	Part-whole model Bar model	Place value counters Column subtraction
Subtract with up to 3 decimal places	5	Part-whole model Bar model	Place value counters Column subtraction

Skill: Subtract 1-digit numbers within 10	Step: 1
	Part-whole models, bar models, ten frames and number shapes support partitioning.
7 - 3 = 4 $7 - 3 = 4$ $First Then Now$	Ten frames, number tracks, single bar models and bead strings support reduction. Cubes and bar models with two bars can support finding the difference.

Skill: Subtract numbers with up to 4 digits	Step: 4
4,357 + 4,357 + 4,357 + 4,357 + 4,357 + 2,735 + 2,735 + 2,735 + 1,622	Base 10 and place value counters are the most effective manipulatives when subtracting numbers with up to 4 digits. Ensure children write out their calculation alongside any concrete resources so
ThousandsHundredsTensOnesIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	they can see the links to the written column method. Plain counters on a place value grid can also be used to support learning.

	Foxfields Academy Calculation
Skill: Subtract numbers with more than 4 digits	Step: 5/6
294,382 294,382 182,501 ? 182,501 ? 182,501 ? 182,501 ? 182,501 ? 182,501 ?	 Place value counters or plain counters on a place value grid are the most effective concrete resource when subtracting numbers with more than 4 digits.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	At this stage, children should be encouraged to work in the abstract, using column method to subtract larger numbers efficiently.

Skill: Subtract with up to 3 decimal places	Step 5/6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Place value counters and plain counters on a place value grid are the most effective manipulative when subtracting decimals with 1, 2 and then 3 decimal places. Ensure children have experience of subtracting decimals
Ones Tenths Hundredths Ones Tenths Hundredths Ones Tenths Hundredths Ones Tenths Ones Tenths Hundredths Ones Tenths Hundredths Ones Tenths Hundredths Ones Tenths Tenths Hundredths Ones Tenths Hundredths Ones Tenths Tenths Hundredths Ones Tenths Hundredths	with a variety of decimal places. This includes putting this into context when subtracting money and other measures.

Skill	Step	Representations and models			
Recall and use	2	Bar model	Ten frames		
multiplication		Number	Bead strings		
and division facts		shapes	Number lines		
for the		Counters	Everyday		
2-times table		Money	objects		
Recall and use	2	Bar model	Ten frames		
multiplication		Number	Bead strings		
and division facts		shapes	Number lines		
for the		Counters	Everyday		
5-times table		Money	objects		
Recall and use multiplication and division facts for the 10-times table	2	Hundred square Number shapes Counters Money	Ten frames Bead strings Number lines Base 10		

Skill	Step	Representation	s and models
Recall and use multiplication and division facts for the3-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the4-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the8-times table	3	Hundred square Number shapes	Bead strings Number tracks Everyday objects

Recall and use multiplication and division facts for the6-times table	4	Hundred square Number shapes	Bead strings Number tracks Everyday objects
---	---	---------------------------------	---

Skill	Step	Representation	Representations and models				
Recall and use multiplication and division facts for the7-times table	4	Hundred square Number shapes	Bead strings Number lines				
Recall and use multiplication and division facts for the9-times table	4	Hundred square Number shapes	Bead strings Number lines				
Recall and use multiplication and division facts for the11-times table	4	Hundred square Base 10	Place value counters Number lines				

Recall and use multiplication and division facts	4	Hundred square	Place value counters
for the12-times		Base 10	Number lines
table			

Skill: T	Step: 2	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		hundred square. Look for patterns in the two times table, using concrete manipulatives to support. Notice how all the numbers are even and there is a pattern in the ones. Use different models to develop fluency.

Skill	Step	Representatio	Representations and models				
Solve one- step problems with multiplicati on	1/2	Bar model Number shapes Counters	Ten frames Bead strings Number lines				
Multiply 2-digit by 1-digit numbers	3/4	Place value counters Base 10	Expanded written methodShort written method				
Multiply 3-digit by 1-digit numbers			Short written method				
Multiply 4-digit by 1- digit numbers	5	Place value counters	Short written method				

Skill	Step	Representations and models					
Multiply 2-digit by 2- digit numbers	5	Place value counters Base 10	Short written method Grid method				
Multiply 2-digit by 3-digit numbers	5	Place value counters	Short written method Grid method				
Multiply 2-digit by 4-digit numbers	5/6	Formal written method					

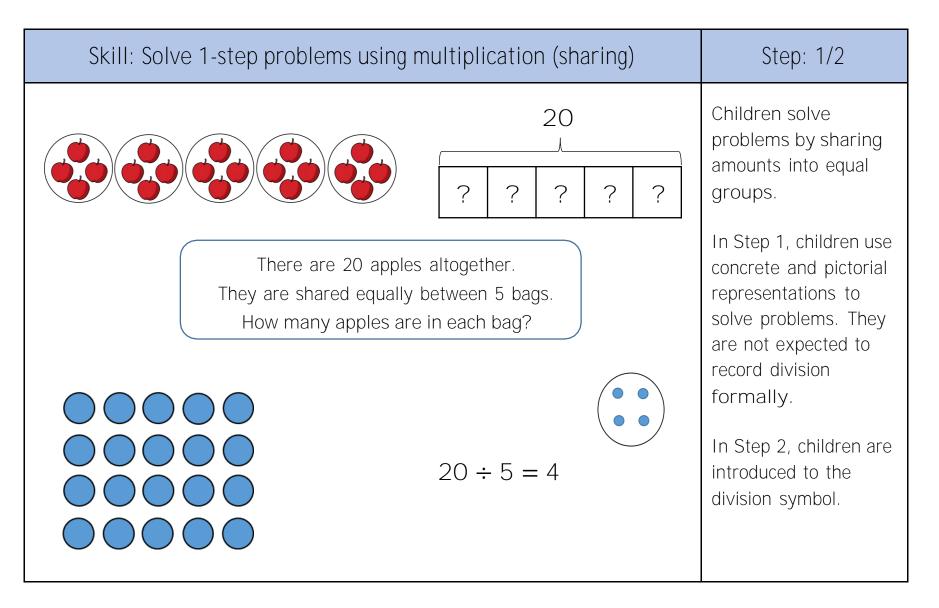
Skill: Solve 1-step problems using multiplication	Step: 1/2
	Children represent multiplication as repeated addition in many different ways. In Step 1, children use concrete and pictorial
One bag holds 5 apples. How many apples do 4 bags hold?	representations to solve problems. They are not expected to record multiplication formally.
$ \begin{array}{c} $	In Step 2, children are introduced to the multiplication symbol.
$\begin{array}{c c} \bullet \bullet \bullet \bullet \bullet & 4 \times 5 = 20 \\ \bullet \bullet \bullet \bullet \bullet & 5 \times 4 = 20 \\ \hline \end{array}$	

Skil	I: Mu	Itipl	y 2-di	git nur	nbers b	y 1-d	igit	nur	nbe	ers	Step: 3/4
		Tens			5 = 1		H 1 1	T 3 2 5 7	0 4 5 0 0	(5 × 4 (5 × 30	Informal methods and the expanded method are used in Step 3 before movingon to the short multiplication methodin Step 4. Place value countersshould be used to support the understanding of
	н	т	0			0	00		0	DO	themethod rather
		3	4			C	00	0	0	DO	than supporting
×			5			C					the multiplication, as
	1	7	0		_	0	00		0	00	children should
	1	2			C	2	20	~	/		use times table knowledge.

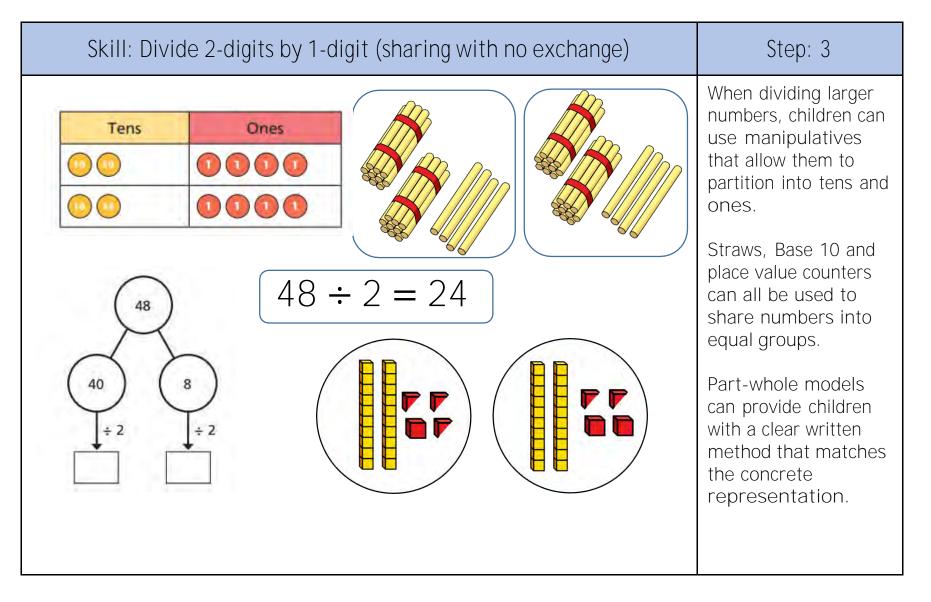
Skill: Multiply 3-digit num	Step: 4			
Hundreds Tens Dress Image: Constraint of the second se		H T 2 4 9 8 1 2	0 5 4 0	When moving to 3- digit by 1-digit multiplication, encourage children to move towards the short, formal written method. Base 10 and place value counters continue to support the understanding of the written method. Limit the number of exchanges needed in the questions and move children away from resources when multiplying larger numbers.

Skill: Multiply 4-0	digit r	numbe	ers by	y 1-c	ligit numbers	Step: 5
	100 100 100 100 100 100 100 100 100 100 100 100 100		Tens 10 10 10 10 10 10 10 10 10 10 10 11	5,4 0 6 3 8	Image:	When multiplying 4- digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method. If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so children can focus on the use of the written method.

	Skill: Multiply 2-digit numbers by 2-digit numbers									Step: 5							
				10 10 10 10 100 100 100 10 100 100 100 10 100 100 100 10 100 100 100 10 100 100 100 10 100 100 100 10 100 100 100 10 100 100 100 10 100 100 100						When multiplying a multi-digit number by2-digits, use the area model to help children understand the size of the numbers they are using. This links to finding the area of a							
	B					BB					, [Н	Т	0		rectangle by finding the space covered by
							X	20		2				2	2		the Base 10. The grid method
1-0						88	30	600	D	60		x		3	1		matches the area
							1	20		2				2	2		model as an initial written method
													6	6	0		before moving on to the formal written
		22 ×	、 3	1 =	= 68	32					Ī		6	8	2		multiplication method.
											-					_	


Skill: Multiply 3-digit num	Step: 5					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			×	2 3 3 4 6 1 2	4 2 8 8 2 0	Children can continueto use the area modelwhen multiplying 3- digits by 2-digits. Place value counters become more efficient to use but Base 10 can be used to highlight the size of numbers.
	× 30	200 6,000	30 900		4	Children should nowmove towards the formal written
234 × 32 = 7,488	2	400	60		8	method, seeing the links with the grid method.

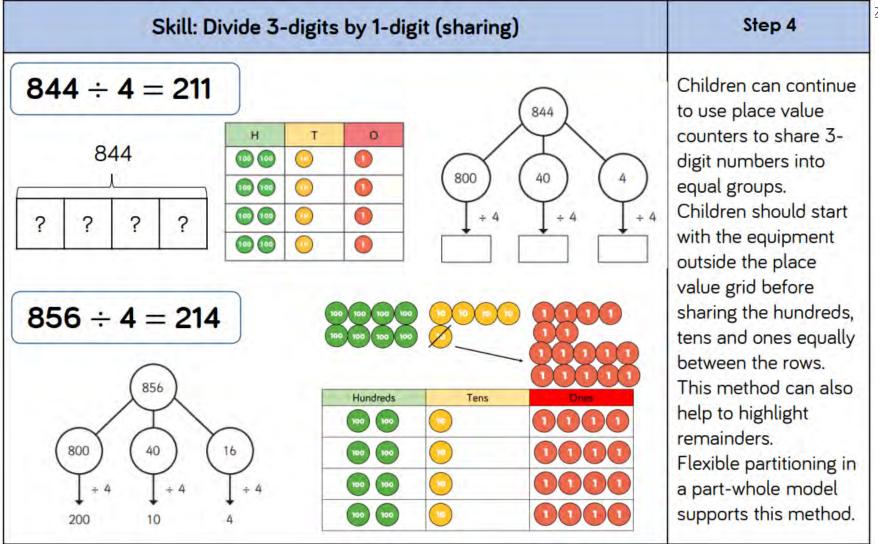
Skill: Multip	Skill: Multiply 4-digit numbers by 2-digit numbers									
	TT h	Th	Н	Т	0		When multiplying 4- digits by 2-digits, children should be			
		2	7	3	9		confident in using the formal written method.			
	×			2	8		If they are still struggling with times tables, provide multiplication grids to			
	2	1 5	9 3	1 7	2					
	5	4	7 1	8	0		support when they are focusing on the use of the method.			
	7	6	6	9	2		Consider where			
2,739 × 28 =	76,6	592	1				exchanged digits are placed and make sure this is consistent.			


Skill	Step	Representatio	resentations and models		
Solve one-step problems with division(sharing)	1/2	Bar model Real life objects	Arrays Counters		
Solve one-step problems with division(grouping)	1/2	Real life objects Number shapesBead strings Ten frames	Number linesArrays Counters		
Divide 2-digits by 1- digit (no exchange sharing)	3	Straw Base 10 Bar model	Place value counters Part-whole model		
Divide 2-digits by 1- digit (sharing with exchange)	3	Straw Base 10 Bar model	Place value counters Part-whole model		

Skill	Step	Representatio	ons and models
Divide 2-digits by	3/4	Straw	Place value
1-digit (sharing		Base 10	counters
with remainders)		Bar model	Part-whole model
Divide 2-digits by	4/5	Place value	Place value grid
1-		counters	Written short
digit (grouping)		Counters	division
Divide 3-digits by 1-digit (sharing with exchange)	4	Base 10 Bar model	Place value countersPart- whole model
Divide 3-digits by	4/5	Place value	Place value grid
1-		counters	Written short
digit (grouping)		Counters	division

Skill	Step	Representation	s and models
Divide 4-digits by 1-digit (grouping)	5	Place value counters Counters	Place value grid Written short division
Divide multi-digits by2-digits (short division)	6	Written short division	List of multiples
Divide multi-digits by 2-digits (long division)	6	Written long division	List of multiples

Skill: Solve 1-step problems using division (grouping)	Step: 1/2
There are 20 apples altogether. They are put in bags of 5.	Children solve problems by grouping and counting the number of groups. Grouping encourages children to count in multiples and links to repeated subtraction on a number line. They can use
How many bags are there? How many bags are there? $20 \div 5 = 4$	concrete representations in fixed groups such as number shapes which helps to show the link between multiplication and division.


Skill: Divide 2-digits by 1-di	Step: 3/4	
$\frac{1}{10}$	52 $7 ? ? ? ? ?$ $-4 = 13$ $0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	 When dividing numbers involving an exchange, children can use Base 10 and place value counters to exchange one ten for ten ones. Children should start with the equipment outside the place value grid before sharing the tens and ones equally between the rows. Flexible partitioning in a part-whole model supports this method.

Skill: Divide 2-digits by 1-d	igit (sharing with remainders)	Step: 3/4
Tens Ones	53 13 1 3 13 13 1	When dividing numbers with remainders, children can use Base 10 and place value counters to exchange one ten
53	$53 \div 4 = 13 r1$	for ten ones. Starting with the equipment outside the place value grid will highlight
40 13 ÷ 4 12 1	Tens Ones 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	remainders, as they will be left outside th grid once the equal groups have been made. Flexible partitioning in
$10 \qquad \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \qquad \qquad$		a part-whole model supports this method

Skill: Divide 2-digits by 1-digit (grouping)	Step: 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	When using the short division method, children use grouping. Starting with the largest place value, they group by the divisor. Language is important here. Children should consider 'How many groups of 4 tens can we make?' and 'How many groups of 4 ones can we make?' Remainders can also be seen as they are left ungrouped.

Foxfields Academy Calculation Policy

Last Poviowod. Fobruary 2024

2025

Skill: Div	vide 3-digits by 1-dig	it (grouping)	Step: 5
$\frac{\text{Hundreds}}{100,000,000,000,000,000,000,000,000,000$	ens Ones	2 1 4 4 8 5 16	Children can continueto use grouping to support their understanding of short division when dividing a 3-digit number by a 1-digit number. Place value countersor plain counters canbe used on a place value grid to supportthis understanding. Children can also draw their own counters and group them through a morepictorial method.

Skill: Divide 4-digits by 1-digit (grouping)	Step: 5
$\label{eq:prod} \boxed{\begin{array}{c} \hline \\ \hline $	Place value counters or plain counters can be used on a place value grid to support children to divide 4- digits by 1-digit. Children can also draw their own counters and group them through a more pictorial method. Children should be encouraged to move away from the concrete and pictorial when dividing numbers with multiple exchanges.

	Skill:	Step: 6									
	12	0	3 43	6 7 2			432	÷ 12	2 = 3	36	When children begin to divide up to 4- digits by 2-digits, written methods become the most accurate as concrete and pictorial representations become less effective. Children can write out multiples to support their calculations with
	~ -	9	larger remainders. Children will also								
7,335 ÷ 15 = 489 $_{15}$ 7 $_{73}$ $_{3}$ $_{3}$ $_{3}$ $_{13}$ $_{5}$										solve problems with remainders where the quotient can be	
15	30	45	60)	75	90	105	120	135	150	rounded as appropriate.

		Sk	kill:	Di	vide multi-digi	ts b	y 2	-di	gits	s (l	on	g divis	sion)	Step: 6
1	2	0 4 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								Children can also divide by 2-digit numbers using long division. Children can write out multiples to support their calculations with			
								0	4	8	9		$1 \times 15 = 15$	larger remainders.
							15	7	3	3	5	(2100	$2 \times 15 = 30$	
\bigcap	7 (າວເ	_		1 = 100		-	6	0	0	0	(×400	$3 \times 15 = 45$	Children will also
	/,、	333	<u>-</u> С	•	5 = 489		-	1	3	3	5	($4 \times 15 = 60$	solve problems with
							_	1		0	0	(×80)	$5 \times 15 = 75$	remainders where the
									1	3	5	($10 \times 15 = 150$	quotient can be
							-		1	3	5	(×9)	10 × 10 = 100	rounded as
											0			appropriate.

		Ski	11:	Div	ide	e multi di	igits	s by	12-	dig	its	(0	ng	divi	sion)	Step: 6
										2	4	r	1	2	1 × 15 = 15	
							1	5	3	7	2				$2 \times 15 = 30$	When a remainder
		1	Г		γ 1	r1)		-	3	0	0				$3 \times 15 = 45$	is
312	•	•	5:	=	24	r12		1		7	2				$4 \times 15 = 60$	left at the end of a
								-		6	0		17		5 × 15 = 75	calculation, children can either leave it
										1	2				$10 \times 15 = 150$	as aremainder or
								1.1.1								convert
1				152.		F.										it to a fraction.
				2	4	-										This will depend on the context of the
	1	5	3	7	2											question.
- (3	0	0	4										question.
(1.1	7	2	5										Children can also
		-		6	0								/1			answer questions
				1	2			37	72 -	÷ 1.	5 =	24	<u>4</u>		<u>5</u>	where the quotient needs to be rounded according to the

Foxfield	ds Academy Calculation Policy
	Last Reviewed: February 2024
	Review Date: June 2025
	context.